Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1015423

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.


Subject(s)
COVID-19/virology , Containment of Biohazards , SARS-CoV-2 , Specimen Handling , Virus Inactivation , Animals , Cambodia , Cells, Cultured , Chlorocebus aethiops , Hot Temperature , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/drug effects , Viral Load/statistics & numerical data , Virus Inactivation/drug effects
2.
J Hosp Infect ; 104(3): 246-251, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-3162

ABSTRACT

Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.


Subject(s)
Betacoronavirus/drug effects , Betacoronavirus/growth & development , Coronavirus Infections/transmission , Disinfectants/pharmacology , Microbial Viability , Pneumonia, Viral/transmission , COVID-19 , Environmental Microbiology , Humans , SARS-CoV-2
3.
Infect Prev Pract ; 2(2): 100044, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-867

ABSTRACT

The novel human coronavirus SARS-CoV-2 has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described, probably via droplets but possibly also via contaminated hands or surfaces. In a recent review on the persistence of human and veterinary coronaviruses on inanimate surfaces it was shown that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days. Some disinfectant agents effectively reduce coronavirus infectivity within 1 minute such 62%-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite. Other compounds such as 0.05%-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. An effective surface disinfection may help to ensure an early containment and prevention of further viral spread.

SELECTION OF CITATIONS
SEARCH DETAIL